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An attempt is made to derive the velocity composition laws in the special 
theory of relativity from first principles, i.e., independent of the Lorentz 
transformations. This leads to a functional equation whose general solution 
generates an infinity of velocity addition laws besides the Einsteinian ones. 

I N T R O D U C T I O N  

In the special theory of relativity the velocity-addition laws follow from 
the transformation laws of space-time, i.e., the Lorentz transformations. I t  
has been suggested by Piaget (1961) that from the epistemological viewpoint 
the concept of velocity in the special theory of relativity should play a role 
more fundamental than the notion of space-time, and he mentions an attempt 
by Abels and Malvaux (1954) to derive the velocity addition laws inde- 
pendently and thence the Lorentz transformations from the transformation 
laws of velocities. 

In the following we present an attempt to derive the velocity composition 
laws independently, f rom first principles. We are led to a functional equation, 
the so-called transitivity equation, whose general solution involves a single 
function ~ of one variable only. The Galilean law of u _+ v belongs to the 
case: (i) Range q~ = ( - ~ ,  ~ ) .  I f  one imposes the velocity of  light c as a 
limiting velocity in all inertial frames, we have the case: (ii) Range ~ = ( -  c, c), 
to which belongs Einstein law of addition of velocities for q~(x)= 
c tanh x. However, there are an infinity of functions ~b which belong to the 
second case and each one of which gives c as a limiting velocity. 
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The following proposition illustrates a basic property of the Einstein 
velocity-addition laws. 

Let {S~}~I denote the set of all inertial frames moving along the x axis, 
say. Here I is a countable index set. 

Proposit ion.  Let f :  {S~}~z ~ R + be any positive function. Assume 
that the velocity of Se relative to S~ is ue~ = [ f ( S ~ ) -  f (SB)]/  
[f(S~) + f(SB)]. Then the Einstein velocity-addition law follows. 

Proof.  We have 

(1 + u,~)/(1 - ue~ ) = [ f (Se)] / [ f (S~) l  

= [ f (S~) . f (S~)] / [ f (S~) . f (S~)]  - 1 + u,~ 1 + u,~ 
1 - uB~ 1 - u ~  

Therefore, 

u , ~  = ( u B ~  - u , ~ ) / ( l  - u,~.u,~) 

A FUNCTIONAL EQUATION FOR TH E 
VELOCITY TRANSFORMATION LAW 

For simplicity, we shall always consider motion in one dimension only, 
e.g., along the x axis. The general case can be treated analogously. Consider 
three inertial frames S, S',  S", with their x axis oriented parallel along the 
same direction. Let v be the velocity of S' relative to S, ~ the velocity of S" 
relative to S'  and ~, the velocity of S" relative to S. Consider now a particle 
with velocity u relative to S, with velocity u' relative to S',  and u" relative to 
S".  L e t f b e  the function of two variables which gives the transformation law 
of velocities. That is, 

u'  = f ( u ,  v ) ,  u" = f ( u ' ,  ~) (1) 

We have also u" = f ( u ,  ~). But the same function f also relates the three 
inertial frames. Namely, 

= f(g, v) (2) 

Thus from (1) and (2), we have 

u" = f ( u ,  ~) = f ( f ( u ,  v), f (~ ,  v)) (3) 

In other words, f satisfies a functional equation of the form 

f ( x ,  y)  = f ( f ( x ,  z),  f ( y ,  z))  (I) 

This is the so-called transitivity equation (Acz61, 1966; Schweitzer, 191 i) and 
its solution is given by the following theorem. 
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Theorem. The general local solution of  the functional equat ion (I) 
is of  the fo rm 

f ( x ,  y) = ~b[q~- l(x) - q~- l(y)] 

where 4' is a cont inuously differentiable and strictly mono tone  func- 
t ion of  one variable, if the domain  of  (I) is such that  f possesses 
cont inuous part ial  derivatives and f~(x, z) ~ O, f2(x, z) ~ O. 

Proof. We differentiate (I) with respect to x, y, and z, respectively, to get 

f l (x ,  y) = f l ( f ( x ,  z ) , f ( y ,  z))fl(x, z) (4) 

f2(x, y) = f2( f (x ,  z), f ( y ,  z))fl(y, z) (5) 

0 = f l ( f ( x ,  z), f ( y ,  z))f2(x, z) + f2( f (x ,  z), f ( y ,  z))f2(y, z) (6) 

Thus 

Let  

Then f rom (7) 

f (x, y) A(x, z)/A(x, 
fz(  X, Y) fl(Y, z)/f2(y, Z) (7) 

~(x) = f f l (x ,  z) dx (keeping z fixed) (8) 

f lCx, y) _ ~b'Cx) 
f2(x, y) ~b'Cy) (9) 

which is a sufficient condit ion that  f (x ,  y) and ~b(x) - 4~(y) are functionally 
related. Thus  there exists a function F, such that  

f (x ,  y) = F(~b(x) - ~b(y)) (10) 

Substituting (10) in (I) we get 

F(~(x) - ~(y)) = F{~b[F(~b(x) - ~b(z))] - ~b[F(~b(y) - ~b(z))]} 

Let  ~b(x) = ~, ~b(y) = ~7, ~b(z) = ~. Then we have 

~: - V = ~b[F(~: - ~ ) ]  - ~ [ F ( - q  - ~)1 ( 1 1 )  

I f  we differentiate (11) first with respect to ~: and then ~7 we obtain 

~b[F(s r - ~)] = ~ ~b[F(v - 01 (12) 

the left-hand side of  which is the same as 8~b[F(~ - ~)]/8(s r - ~). So differ- 
entiating (12) with respect to x now, we have 

O24J[F(~: - 0 ]  d~: = 0 
8 ( ~ -  ~)2 dx 
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I f  d f / d x  = 0, r = constant or f ( x ,  y) = constant,  which we exclude. I f  
d~/dx :/: 0 we get 

a2r - 01  _ 0 (13) 
~(~ - 0 2  

whose general solution is ~b[F(~:- ~)] = cl(s c - ~ ) +  c2 where cl, c2 are 
constants. Let x (x )  = r - c2. Then x[F(~ - ~)] = c1(~: - ~). Hence 

x[f(x ,  y)] = cl[x(x)  - X(Y)] (14) 

Substituting (14) in (I) or in x [ f ( x ,  y)] = x [ f ( f ( x ,  z),  f ( y ,  z))] we get 

c1[x(x) - X(Y)] = Cl{Cl[X(x) - X(Z)] - c l [x (y )  - X(Z)]} 

That  is, cl 2 = c~ or  cl = 0, 1. Sincef(x,  y) r constant,  we must have c~ = 1. 
So finally, f rom (14) 

f ( x ,  y )  = X - l [ x ( x )  - X(Y)] 

or  putting 4 = X-1 

f(x, y)  = r  - 4 - 1 ( y ) ]  

Note  that  f l ( x ,  z) r 0 guarantees f rom (8) that  r and hence X, are strictly 
monotone.  This completes the proof.  

Thus 

f ( u ,  v) = 414,- l(u) - r  l(u)] (II) 

F r o m  physical considerations we must have u = f ( u ,  0). That  is, u = 
414-1(u) - 4-1(0)].  Or r  = 0. We must  also have - v  = f (0 ,  v), since 
the velocity o f  S relative to S '  is - v. This implies 4 -  i ( _  v) = - r  l(v), that  
is, 4 -1 is an odd function. Therefore, r is also an odd function and f is 
antisymmetric,  i.e., f ( u ,  v) = - f ( v ,  u). 

The Galilean velocity-addition law is obtained by setting r = u to 
give f ( u ,  v) = u - v. We can classify the functions r into two classes, those 
with (i) Range 4 = ( - ~  m) and those with ( i i ) f ini te  Range 4- The Galilean 
law belongs to the first case. I f  we now assume that  the velocity of  light c is 
the limiting velocity in all inertial frames we obtain the second case. 

We assume then, that  for  all - c  < v < c, 

lim f ( u ,  v) = +_c (15) 

F r o m  (II) it follows that, for all v ~ Domain  4 -1  

Since 4' is monotone ,  this is possible if and only if l i m ~  • 4-1(u)  = +oo, 
or  4 , ( + 0 0 ) =  +r  i.e., R a n g e r  = ( - c , c ) .  Thus (II) and (15) imply that 
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~, ~-1 are odd, monotone functions and that Domain ~ = (-0% oo) but 
Range ~b = ( - c ,  c). 

One such function is of course ~(u) = c tanh u. Then 

f ( u , v ) = c t a n h ( t a n h _ l U _ _ t a n h _ l V c )  = u - v  
c 1 - u v / c  2 

which is the Einstein addition law. Another such function is ~ (u )=  
(2c/~r) tan -1 (u), so that 

f ( u , v )  = 2C tan_l  _ ~rv) ~r ~-~ tan ~-~ (16) 

However, one can construct an infinity of such functions. Because, if 
~b(x) is one such function, then consider ~b(x)= c sin [@/2c)~(x)]. Thus 
~b(-x) = - ~b(x) and limx~ ~ | ~b(x) = ++ c. Each such function will give rise to 
a velocity-addition law satisfying both (I) and (15). It remains an interesting 
problem to find an extra mathematical (and physically plausible) condition 
which will single out the Einsteinian function ~. 

We conclude by considering briefly the general problem of deriving the 
space-time transformation laws from arbitrary velocity addition laws. Let the 
space-time transformation formulas between S and S'  be given by x' = 
~b(x, t) and t '  = ~b(x, t). Then we have (linearly) 

u' dx' _ (~xu + St 
- dt'  ~bxu + ~b t f (u ,  v) (17) 

We assume thatf(u,  v) is analytic in ( -  c, c) x ( -  c, c) and expand it in a 
power series about (0, 0) to get 

(b~u + q~t) = @xU + ~bt)[f(0, 0) + uf~(O, O) + vf2(O, O) 

1 
+ ~ [u2f~(0, 0) + 2uvfx=(O, 0) + v2f~2(0, 0)] 

1 
+ ~ [uafm(0, 0) + 3f~2(0, 0)u2v + 3f~2e(0, O)uv 2 

+ vaf222(0, 0)] + . . . ]  (18) 

Note that from (I) and (II) we have, in general, 

f(0, 0) = f~(0,  0) = fn l (0 ,  0) . . . . .  0 but f~(0, 0) = 1 (19) 

Thus 

~ + ~xu = r + u[~x/~(v) + ~v(v)] + u~[~x~(v) + O~(v)] + . . .  (20) 
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where 

etc. 

v 2 v 3 
a(v) = fi(v) = vf2(O, O) + ~..f22(0, O) + ~. f222(0, O) + . . -  

v(v) = 8(v) = fifO, O) + vf~2(O, O) + v2f122(O, O) + . . .  (21) 

~(v) = vf112(0, 0) + . - .  

Equat ing the coefficients of  powers  of  u in (20) we obtain for  the (linear) 
t ransformat ion  matrix 

(v) ~(v)] ~(v)~,(v) 

where Ct = y(v). 
For  the Lorentz  case, a(v) = - v ,  8(v) = 1 + v/c 2, 

~(v) = ~ 1 + 

and so 

(22) 

e(v) -vT(v)) 
A(v) = v 

- - j  ~(v) y(v) 

One can now use the fact A ( - v ) . A ( v ) =  identity, to give y ( v ) ~ , ( - v ) =  
(1 - v2/c 2)-  1. Finally, spatial isotropy can be invoked to give y(v) = } , ( -  v) = 
(1 - v2/c 2)- 112 and thus the Lorentz  t ransformation.  
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